A duality relation connecting different quantum generalizations of the conditional Rényi entropy
نویسندگان
چکیده
Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. This generalizes the well-known duality relation H(A|B)+H(A|C) = 0 for tripartite pure states to Rényi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Rényi entropies.
منابع مشابه
A Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملRényi squashed entanglement, discord, and relative entropy differences
The squashed entanglement quantifies the amount of entanglement in a bipartite quantum state, and it satisfies all of the axioms desired for an entanglement measure. The quantum discord is a measure of quantum correlations that are different from those due to entanglement. What these two measures have in common is that they are both based upon the conditional quantum mutual information. In [Ber...
متن کاملα-z-Rényi relative entropies
We consider a two-parameter family of Rényi relative entropies Dα,z(ρ||σ) that are quantum generalisations of the classical Rényi divergence Dα(p||q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum general...
متن کاملRenyi generalizations of the conditional quantum mutual information
The conditional quantum mutual information I(A;B|C) of a tripartite state ρABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A;B|C) = I(A;B|D) for a f...
متن کاملA step beyond Tsallis and Rényi entropies
Tsallis and Rényi entropy measures are two possible different generalizations of the Boltzmann-Gibbs entropy (or Shannon’s information) but are not generalizations of each others. It is however the Sharma-Mittal measure, which was already defined in 1975 (B.D. Sharma, D.P. Mittal, J.Math.Sci 10, 28) and which received attention only recently as an application in statistical mechanics (T.D. Fran...
متن کامل